Program: Doctor of Philosophy Program in Geoinformatics (International Program)

Degree: Doctor of Philosophy (Geoinformatics)

Study Plan:

1) Research Program (Scheme 1.1: for Master's Degree holder)

Year	First Trimester	Cr	Second Trimester	Cr	Third Trimester	Cr
1	Ph.D. Thesis	1-3	Ph.D. Thesis	3-5	Ph.D. Thesis	3-5
Year	Seminar 1	1				
Y	Total	2-4	Total	3-5	Total	3-5
Year 2	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15
Y	Total	3-15	Total	3-15	Total	3-15
3	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15
Year					Seminar 2	1
Y	Total	3-15	Total	3-15	Total	4-16

2) Regular Program (Scheme 2.1: for Master's Degree holder)

Year	First Trimester	Cr	Second Trimester	Cr	Third Trimester	Cr
	Core Course	8	Elective Course	10	Seminar 1	1
ear					Ph.D. Thesis	1-3
Y	Total	8	Total	10	Total	2-4
ear 2	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15
Ϋ́	Total	3-15	Total	3-15	Total	3-15
8	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15
Year					Seminar 2	1
Y	Total	3-15	Total	3-15	Total	4-16

3) Regular Program (Scheme 2.2: for Bachelor's Degree holder)

Year	First Trimester	Cr	Second Trimester	Cr	Third Trimester	Cr
	Core Course	12	Core Course	4	Elective Course	8
Year			Elective Course	6		
$\mathbf{X}_{\mathbf{i}}$	Total	4/12	Total	4/12	Total	4/12
2	Seminar 1	1	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15
Year	Ph.D. Thesis	1-3				
Y	Total	2-4	Total	3-15	Total	3-15
Year 3	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15
Y	Total	3-15	Total	3-15	Total	3-15
Year 4	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15
Χ	Total	3-15	Total	3-15	Total	3-15
S	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15	Ph.D. Thesis	3-15
Year					Seminar 2	1
Y	Total	3-15	Total	3-15	Total	4-16

Program: Doctor of Philosophy Program in Geoinformatics (International Program)

Degree: Doctor of Philosophy (Geoinformatics)

Course Description:

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
Core Course	<u>.</u>			
106801 Advanced Remote Sensing	4(4-4-12)	None	This course aims to study remote sensing theories and application in various aspects. These include, in particular, origin/development of key remote sensing systems, principles of remote sensing systems regarding types of sensor, platform, and target e.g. (1) ground-based, airborne, spaceborne; and (2) sea/ocean, atmosphere, space remote sensing. Applications of remote sensing in different fields, general information on main resources of data and tools for advanced remote sensing research/applications, and key progresses in advanced remote sensings topics nowadays are also discussed.	1. Explain origin and development of remote sensing science conceptually 2. Explain principles of remote sensing regarding types of sensor, platform, targer area 3. Explain principles of ground-based, airborne, spaceborne remote sensing 4. Analyze advances in study/research on remote sensing nowadays 5. Apply remote sensing science in the study of given topic

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
Advanced Digital Image Analysis and Interpretation	4(3-3-10)	None	This course provides essential principles of object-based image analysis from very high spatial resolution remotely sensed data. In addition, public and commercial digital image processing software are introduced and exercised on pixel-based image analysis in this course with individual semester assignment and presentation. The specific topic of course outline includes (1) principle of object-based image analysis, (2) data collection and image preprocessing, (3) basics of image segmentation and image object construction, (4) optimum feature selection for object-based image classification, (5) object-based image classification, (6) accuracy assessment, and (7) object-based change detection.	 Explain principle and algorithm of object-based image analysis Explain basic of image segmentation and feature selection Apply digital image processing software for the image segmentation, classification, accuracy assessment, and digital change detection Integrate knowledge about object-based image analysis in practice

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106803	Advanced Geographic Information System	4(3-3-10)	None	Theories relating to geographic information system (GIS), metadata, spatial database design, advanced techniques in spatial analysis, geographic quantitative methods, interpolation, topographic data analysis, hydrology, spatial modeling, discussion and assessment of previous studies using geographic information system as a tool, development of an individual research project, report writing and presentation	 Explain theories relating to geographic information system Design a spatial database Analyze spatial data using advanced techniques Create spatial model Develop a research project applying geographic information system
Elective C	Course				

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106711 Microwave R Sensing and I	` /	106801 Advanced Remote Sensing or by concent of the school	This course aims to study radar and lidar systems in various topics. These include, in particular, their origins and past development, their working principles (especially for imaging radar), airborne and spaceborne remote sensing of these instruments, as well as their crucial applications at present. Passive microwave remote sensing is also discussed herein.	1. Explain origins and development of radar and lidar systems conceptually 2. Explain working principles of the given radar/lidar system (especially imaging radar) 3. Explain principles of airborne/spaceborne remote sensing of radar/lidar systems 4. Apply radar or lidar sciences to fulfill assigned study topics effectively 5. Analyze advances in science and roles of passive microwave remote sensing 6. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments.

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106712 Hyperspectral Remote Sensing and Applications	4(4-0-12)	None	This course provides essential principles of hyperspectral remote sensing system and its applications. Also, public and commercial image processing softwares are introduced and applied on hyperspectral image classification along with individual assignment/presentation. Specific topics include (1) principles of hyperspectral remote sensing, (2) data collection and spectral library construction, (3) hyperspectral image preprocessing, (4) hyperspectral image classification algorithms, (5) hyperspectral image classification and accuracy assessment.	 Explain principles of hyperspectral remote sensing and its applications. Apply image processing softwares for spectral library construction, hyperspectral image preprocessing, image classification and accuracy assessment. Integrate yielded knowledge on hyperspectral remote sensing in practice.

	Courses	Credit (LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
		Self stud.)			
106713	Remote Sensing of	4(4-0-12)	106801 Advanced	This course aims to study various	1. Explain origin and development of
	Earth's Surface and		Remote Sensing or by	topics about remote sensing of the	earth's surface/atmosphere remote
	Atmosphere		concent of the school	earth's surface and atmosphere.	sensing
				These includes, in particular, origin	2. Explain principles of remote sensing
				and development of relevant science,	regarding spectral bands and target
				principles of remote sensing	locations (atmosphere, sea/ocean, land)
				regarding used spectral bands and	3. Apply remote sensing to aid
				target locations (atmosphere,	effective study of the considered
				sea/ocean, land). Applications of	management topics/ issues (especially
				remote sensing to achieve effective	on natural resources and environment
				management in various fields,	and city/its environment)
				especially in natural	4. Integrate relevant knowledge/skills
				resources/environmental	to fulfill needs stated in the given
				management and city/its environment	assignments
				management, are also presented	
				herein.	

		Credit			
	Courses	(LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
		Self stud.)			
106714	GNSS: Theory and	4(3-3-10)	None	This course aims to study theories	1. Explain origin and development of
	Applications			and applications of the GNSS	GNSS technology conceptually
				(Global Navigation Satellite System)	2. Explain working principles of GNSS
				in various aspects. These include, in	satellites/receivers (focused on Navstar
				particular, origin and development of	system)
				GNSS, working principles of GNSS	3. Explain principles of efficiency
				satellites and the receivers (especially	enhancement for receivers
				the Navstar system), principles of	4. Apply GNSS science/receivers to
				efficiency enhancement for receivers	aid effective study of the considered
				(especially errors reduction).	topics
				Applications of GNSS satellites and	5. Integrate relevant knowledge/skills
				receivers on different fields	to fulfill needs stated in the given
				nowadays are also presented herein.	assignments
106715	Geoinformatics for	4(4-0-12)	None	This course aims to explore	1. Explain comprehensive roles of
	Field Study and			applications of geoinformatics to	geoinformatics in field study and
	Research			field study and research in various	research
				aspects. These include, in particular,	2. Apply geoinformatics tools (like
				principles of field survey and data	GPS receiver/maps) in field survey
				collection, applications of	effectively
				geoinformatics tools (like GPS	3. Analyze and process data from field
				receiver) in key field survey activities	survey to fulfil the set objectives
				(e.g., data recording, mapping, terrain	
				analysis), and field survey and	
				statistical data analysis practices.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106716	Computer Programming for Geoinformatics Applications	4(3-3-10)	None	This course is designed to provide essential knowledge on computer programing and its applications to large-scale Geoinformatics study/research. Study topics include principles of computer programming and its applications to remote sensing and GIS fields, processing of raster/vector data, and automatic map production. In addition, computer programming practice/training in laboratory are also incorporated as well as the small project assignments to be fulfilled by students.	1. Describe essential knowledge on computer programming 2. Apply and relate computer programming to raster data or satellite image 3. Apply and relate computer programming to vector data or geometric shape 4. Apply and relate computer programming to mapping or cartography 5. Create computer program to solve practical problems in geoinformatics
106717	Spatial Decision Support System and Multi-criteria Decision Analysis	4(3-3-10)	•	This course aims to illustrate the integration of GIS and multi-criteria decision analysis (MCDA) for spatial decision support. Main course content includes creation of the decision criteria, decision alternatives and constraints, criteria weighting techniques, decision rules, sensitivity analysis, and result representation in spatial information form to support effective executive decision making.	 Explain principles of multi-criteria decision analysis combined with GIS Use decision criteria and alternatives Examine constraints and criterion weights Review decision rules to apply in a research Develop a research project applying spatial decision support system and MCDA

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106718	Applied Statistics for Geoinformatics Research	4(3-3-10)	None	Main aim of this course is to study utilization of statistical methods for geoinformatics data analysis whose notable ones include spatial sampling, sampling network design, spatial pattern analysis, spatial autocorrelation analysis, multidistance spatial cluster analysis, spatial outlier and hotspot analysis, geographic distribution measurement, semivariogram construction and interpretation, covariance/crosscovariance analysis, spatial interpolation and accuracy assessment, global and local spatial regression analysis.	1. Explain principles of spatial statistical analyses 2. Interpret results of spatial statistical analyses 3. Analyze advantages/drawbacks of statistics applied to various types of spatial data 4. Review statistical methods to apply in a research 5. Develop a geoinformatics research project applying spatial statistics
106719	Geospatial Database Management System and GIS Standards	4(3-3-10)	None	This course focuses on geospatial database management system with GIS standards. Main topics cover concept and architect of geospatial database, spatial database standards, inserting various data into the geospatial database, spatial data query, and analysis, database design and creation. Hands-on demonstrations of relevant softwares on geospatial database management are also given in the laboratory.	 Describe concept and architect of geospatial database Describe spatial database standards Relate and apply gained knowledge to insert various data into geospatial database Relate and apply gained knowledge to query and analyze spatial data Relate and apply gained knowledge to design and create geospatial database

		Credit			
	Courses	(LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
		Self stud.)			
106721	Geoinformatics	4(3-3-10)	None	Main aim of this course is to study	1. Describe geoinformatics data and
	Data and			about geoinformatics	information through modern media
	Information			data/information services via modern	2. Apply geoinformatics data and
	Services through			media. Main topics shall cover	information through modern media
	Modern Media			geoinformatics data and information	3. Apply Mash-Up Map Application
				through modern media with ISO,	4. Apply Web Map Service
				Mash-Up Map Application, Web	management
				Map Service management, Designing	5. Apply the design and modification
				and modifying of user interface for	of user interface for internet GIS
				GIS Internet. Practices on	
				geoinformatics data and information	
				services via internet are also	
				performed in the laboratory.	
106811	Advanced digital	4(3-3-10)	106803 Advanced	This course aims to describe	1. Explain principle theory of advanced
	photogrammetry		Geographic	principle theory of Photogrammetry,	digital photogrammetry
	and 3D modelling		Information System or	object modelling, and 2D and 3D	2. Adjust and rectify the high-
			by consent of the school	modelling. This course also contains	resolution images for UAV mapping
				description illustrated both	effectively
				dimension measurement and	3. Generate 3D model or 2D and 3D
				labelling of 3D model using	spatial model accurately
				AutoCAD program. The student is	4. Give the information of object
				required to perform a project	model in 2D and 3D using AutoCAD
				presenting flight lines and	5. Produce high-resolution map, object
				rectification of high-resolution image	model, and 2D/3D spatial model
				mapping from UAV over the campus	accurately

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106812	Advanced Spatial Data Analysis	4(3-3-10)	106803 Advanced Geographic Information System or by consent of the school	This course aims to enhance knowledge of the spatial modelling principles and their applications on some spatial issues including tendency prediction of the specific phenomena regarding continuous input data in use. Comprehensive discussion about the directions and tendency of spatial model applications (considering quality of the applied spatial data along with the implemented modelling tools) is also presented therein.	1. Explain characteristics and types of geoinformatics data 2. Implement the functions and algorithm with the spatial issues appropriately 3. Develop slope, aspects and terrain models using different kinds of digital elevation models (DEM) 4. Develop images from continuous data with reliable qualified results 5. Apply appropriate spatial models to fulfilled given objectives
106813	Advanced spatial modelling: Theory and Applications	4(3-3-10)	106803 Advanced Geographic Information System and 106812 Advanced Spatial Data Analysis or by consent of the school	This course aims to enhance knowledge of advanced surface modelling in two and three dimensions based on mathematical algorithm and models by using advanced spatial modelling application in GIS. In addition, students are required to analyze surface modelling and present a project by using advanced spatial modelling functions in this course also.	1. Explain relationships of location and phenomena regarding different topography 2. Implement the spatial analysis tools in GIS proficiently 3. Explain functions and give reasons in adjusting parameters of the spatial models accurately 4. Apply the spatial models appropriately to fulfill the assigned project 5. Analyze and give reasons to support the analyzed results of spatial 3D model with a guideline of appropriated solutions

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106814	Big Data Analytics	4(3-3-10)	None	This course focuses on big data	1. Describe the concept and
	for Advanced			analysis applications for	characteristics of big data
	Geoinformatics			geoinformatics problem with large-	2. Describe data processing pipelines
	Applications			scale data. Main topics include	for big data
				concept of big data, processing	3. Describe data analysis techniques
				pipelines for big data, techniques for	for big data
				big data analysis, and applications of	4. Apply appropriate data analysis
				big data analysis tools like	techniques to large-scale data
				ApacheSpark and MapReduce. In	5. Apply big data analysis tools, i.e.,
				addition, big data analytics for some	ApacheSpark and MapReduce, to large-
				geoinformatics applications shall be	scale data
				demonstrated wherein students shall	6. Apply big data analytics to
				gain experience through laboratory	geoinformatics problems
				practices on various examples. Small	
				assigned project is needed to be	
				fulfilled by each student also.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106815	Machine Learning for Advanced Geoinformatics Solution	`	None	This course focuses on machine learning concept and technology and its applications for solving current geoinformatics problems. Main topics include machine learning principles; supervised classification, such as Support Vector Machine (SVM); unsupervised classification, such as self-organizing map (SOM); linear regression methods such as least square regression (LSR); non-linear regression methods like gradient descent (GD); and dimensionality reduction likes principle component analysis (PCA). Several practical applications of machine learning tools in solving	1. Describe machine learning principles 2. Describe supervised (e.g. SVM) and unsupervised (e.g. SOM) classifications 3. Describe non-linear regression (e.g. LSR) and linear regression (e.g. GD) 4. Describe dimensionality reduction methods (e.g. PCA) 5. Apply unsupervised and supervised classifications to analyze relevant data 6. Apply non-linear and linear regressions to estimate prospective data 7. Apply the machine learning tools to solve given geoinformatics problems
				geoinformatics problems are demonstrated. Students shall have hands-on practicing experiences through various examples and small project assigned.	

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
Network and Deep Learning for Advanced Geoinformatics Applications	4(4-0-12)	None	This course provides knowledge on artificial neural network with deep learning tools and their applications for geoinformatics issues. Main topics include artificial neural network (ANN), key parameters of neural network's architecture, tuning hyper parameters of neural network, various neural network forms with deep learning, such as Multilayer perceptron (MLP), convolutional neural network (CNN), recursive neural network (RNN), shallow neural network (SNN). Several applications of ANN and deep learning tools in solving geoinformatics problems are demonstrated whereas students shall have hands-on practicing experiences through various examples and small project assigned.	1. Describe concept of artificial neural network with deep learning 2. Describe key parameters in a neural network's architecture 3. Describe concept of hyper parameter tuning of neural network 4. Describe major neural network forms with deep learning like Multilayer perceptron (MLP), Convolutional neural network (CNN), Recursive neural network (RNN), Shallow neural network (SNN), etc. 5. Apply deep learning to build, train and apply to relevant data 6. Apply deep learning to solve specific problem in geoinformatics field

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106817	Cartography and	4(3-3-10)	None	This course aims to explain and	1. Create map that visually
	Visualization			apply cartographic theory for visual	communicates two or more variables
				communication and visual thinking,	related to a subject
				as well as for thematic map creation,	2. Apply cartographic theory to select
				using GIS software. The content is	visual representations and symbols
				divided into two main parts: theory	properly
				and practice. A project-based	3. Design effective map layout using
				learning will be employed to enhance	visual hierarchy with balance of text
				important practical skills in	and graphic
				mappings of students, such as	4. Evaluate appropriate theme for
				creating symbolization schemes,	mapping of the given variable types
				coordinate systems and map	
				projections, creating isoline and other	
				terrain data, interpolation,	
				classification schemes, multivariate	
				representation and representation of	
				data uncertainty.	

Course	es	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106731 Special Geoinfo Research		2(2-0-6)		This course aims to train students to setup tentative research topic and working plan effectively (for their thesis or independent study). Initial topics include principles of literature review, research topic identification and implementation planning, and effective preparation/ presentation of the progress report. Pragmatic applications of geoinformatics science to fulfil referred study topic/issue are also expected in this course.	1. Explain principles of literature review for proper identification of research topic 2. Explain principles of effective research topic preparation and implementation 3. Explain principles of effective preparation and presentation of progress report 4. Apply geoinformatics science in the study of the given topic/issue effectively

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106732 Geoinformatics for Studies in Atmospheric and Oceanic Sciences	4(4-0-12)	106801 Advanced Remote Sensing or by concent of the school	This course aims to study various aspects of geoinformatics applications to advanced studies in atmospheric and oceanic sciences. These include, in particular, dynamic structure of atmosphere and oceans, important study and research topics in atmospheric and oceanic sciences, principles of atmospheric/oceanic remote sensing, critical changes of atmosphere and oceans and impacts on human and earth, and various applications of geoinformatics in atmospheric and oceanic sciences nowadays.	1. Explain dynamic structure and components of atmosphere and oceans 2. Explain key details of the referred advanced study/research topics in atmospheric and oceanic sciences 3. Explain principles of atmospheric/oceanic remote sensing 4. Analyze critical changes of atmosphere/oceans and impacts on human and earth 5. Apply geoinformatics to the study of the concerned topics/issues in atmospheric and oceanic sciences studies effectively 6. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106733 Geoinformatic Public Health Epidemiology Studies	,	None	This course aims to explore role of geoinformatics in public health and epidemiology studies. Key topics include (1) conceptual framework of public health/epidemiology studies, (2) principle of public health/epidemiology management, (3) public health and epidemiology management modelling, and (4) geoinformatics applications to public health/epidemiology studies. In addition, paper presentation and practical applications of relevant geoinformatics tools and geospatial models for effective public health/epidemiology management shall be implemented also.	1. Explain conceptual framework of public health and epidemiology studies 2. Explain principles of public health and epidemiology management 3. Apply geospatial models to public health and epidemiology studies 4. Integrated yielded knowledge/skills for public health/epidemiology studies practice

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106734	Geoinformatics for	4(4-0-12)	106801 Advanced	This course explores current	1. Explain important study topics in
	Anthropology and		Remote Sensing or by	applications of geoinformatics	anthropology and paleoenvironment
	Paleoenvironment		concent of the school	science to anthropology (especially	studies
	Studies			archaeology) and paleoenvironment	2. Explain general principles of
				studies in various aspects. These	geoinformatics application to
				include, in particular, principles of	anthropology (especially archaeology)
				survey location identification,	and paleoenvironment studies
				advanced survey tools, principles of	3. Analyze advances in current study in
				land-based survey and	anthropology and paleoenvironment
				airborne/spaceborne survey, spatial	studies
				data management (e.g. recording,	4. Apply geoinformatics/spatial models
				analysis, and processing), creation of	to study of the considered topics/issues
				complex spatial database, and	in anthropology and paleoenvironment
				applications of spatial models to	studies effectively
				specific works (especially the habitat	5. Integrate relevant knowledge/skills
				suitability analysis).	to fulfill needs stated in the given
					assignments

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106735	Geoinformatics for	4(4-0-12)	None	This course aims to provide essential	1. Explain concept of sustainable
	Sustainable Natural			knowledge on sustainable natural	natural resource and environmental
	Resource and			resource and environmental	management
	Environmental			management through geoinformatics	2. Explain component of natural
	Management			science as well as relevant practices	environments
				on this issue. Initial topics include (1)	3. Explain principle of natural resource
				conceptual framework of sustainable	and environmental management
				natural resource and environmental	4. Apply spatial models to sustainable
				management, (2) components of	natural resource /environmental
				natural environment, (3) human	management
				influence on environmental changes,	5. Integrate yielded knowledge/skills
				(4) principles of sustainable natural	for sustainable natural
				resource and environmental	resource/environmental management in
				management, (5) environmental	practice
				impact assessment (EIA) process,	
				and (6) natural resource and	
				environmental management	
				modelling.	

Co	ourses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106736 Ge	eoinformatics for	4(4-0-12)	None	This course provides crucial	1. Explain fundamental principles of
Ну	drology and			knowledge on hydrology and	hydrology and hydrological process
Sus	stainable Water			sustainable water resource	2. Explain principles of sustainable
Res	esource			management through geoinformatics	water resource management
Ma	anagement			science. Initial topics include (1)	3. Apply appropriate geospatial models
				fundamental principles of	on water resource management
				hydrology/hydrological process, (2)	4. Integrated yielded knowledge/skills
				principles of sustainable water	for water resource management in
				resource management, and (3)	practice.
				sustainable water resource	
				management modelling. In addition,	
				paper presentation and practical uses	
				of appropriate geoinformatics tools	
				and geospatial models for sustainable	
				management of water resource shall	
				be implemented also.	

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106737 Geoinformatics for Sustainable Management of Terrestrial Ecosystem	4(4-0-12)	None	This course provides crucial knowledge on geoinformatics applications to sustainable management of terrestrial ecosystem. Studied topics include (1) fundamental principles of the terrestrial ecosystem, (2) principles of the sustainable terrestrial ecosystem management, (3) terrestrial ecosystem classification, assessment, and monitoring through remote sensing, and (4) geospatial modelling for sustainable terrestrial ecosystem management. In addition, paper presentation and practical applications of proper geoinformatics tools and geospatial models for sustainable management of terrestrial ecosystem shall be implemented also.	1. Explain fundamental principles of the terrestrial ecosystem 2. Explain principles of sustainable terrestrial ecosystem management 3. Apply geospatial models on sustainable management of terrestrial ecosystem 4. Integrate gained knowledge/skills for terrestrial ecosystem management in practice.

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106738 Geoinformatics for Sustainable Management of Coastal and Marine Ecosystems	4(4-0-12)	None	This course provides crucial knowledge on geoinformatics applications to sustainable management of coastal and marine ecosystems. Initial topics include (1) principles of coastal and marine ecosystems, (2) principle of sustainable coastal/marine ecosystem management, (3) coastal and marine ecosystems classification, assessment, and monitoring through remote sensing, and (4) geospatial modelling for sustainable management of coastal and marine ecosystem. In addition, paper presentation and practical applications of given geoinformatics tools and geospatial models for sustainable management of coastal and marine ecosystem shall be implemented also.	1. Explain principles of coastal and marine ecosystems 2. Explain principles of sustainable coastal and marine ecosystems management 3. Apply geospatial model to sustainable management of coastal/marine ecosystems 4. Integrate yielded knowledge/skills for sustainable management of coastal/marine ecosystems in practice.

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106739 Geoinformatics for Integrated Watershed Management of Land and Resources	4(4-0-12)	None	This course provides crucial knowledge on geoinformatics applications to integrated watershed-scale management of land and resources. Studied topics include (1) principles of watershed management, (2) geomorphology of watershed, (3) soil erosion, landslide, flood and drought, (4) integrated watershed management of land and resources, and (5) land use change models for land and resources management. In addition, paper presentation and practical applications of proper geoinformatics tools and geospatial models for integrated watershed management of land and resources shall be implemented also.	1. Explain principles of integrated watershed management of land and resources 2. Explain about geomorphology of watershed, soil erosion, landslide, flood, drought 3. Apply geospatial models to integrated watershed management of land/resources. 4. Integrate yielded knowledge/skills for integrated watershed-scale management of land and resources in practice.

		Credit			
	Courses	(LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106741	Geoinformatics for Effective Disasters and Risk Management	4(4-0-12)	106801 Advanced Remote Sensing or by concent of the school	geological disasters, hydrological disasters, meteorological disasters, environmental disasters, space disasters, as well as the prominent	1. Explain origins, characteristics, and impacts of the given disasters 2. Explain origins, characteristics of prominent natural disasters in ASEAN countries 3. Explain principles of geoinformatics/spatial model applications to the management of given disasters, or risk, effectively 4. Apply geoinformatics science/spatial models to the study of given topics/issues in disasters and risk management effectively 5. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments
106742	Geoinformatics for Sustainable Energy Management	4(4-0-12)	106803 Advanced Geographic Information System or by consent of the school	This course aims to explain about sustainable management of energy in both cases of the renewable and non-renewable energy, as well as tendencies of energy consumption and future situation. The student is required to present a project showing the application of geoinformatics technology to the relevant energy issues for sustainable management.	Explain definitions of energy and sustainable energy management Discuss on direction/tendency of energy consumption in the future Analyze factors considered in sustainable energy management using GIS Present a project of interest in sustainable energy management

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106743	Geoinformatics for Land Resource Management and Suitability Analysis	4(4-0-12)	None	This course provides key knowledge on geoinformatics applications to land resource management and suitability analysis. Initial topics includes (1) fundamental principles of land resource management, (2) modelling of suitable land allocation, (3) principles and procedure of land	 Explain principle of land resource management and suitability analysis Explain suitable land allocation models Explain principles and procedure of land evaluation Apply land allocation model to land suitability analysis and land use
				evaluation, (4) land suitability analysis and land use planning, and (5) soil quality assessment for plantation of economic crops. In addition, paper presentation and practical applications of appropriate geoinformatics tools and geospatial models for land resource management and suitability analysis shall be implemented also.	planning

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106744	Geoinformatics for	4(4-0-12)	None	This course aims to study	1. Explain definitions/concepts of
	Advanced			geoinformatics applications to	advanced, precision, and smart farming
	Agricultural Sector			advanced agricultural sector. Notable	systems
	Management			topics are precision farming and	2. Discuss tendency of geoinformatics
				smart farming. Main contents are	applications to advanced, precision,
				principles of the analysis of	and smart farming systems
				vegetation indices, that represent	3. Analyze indices representing
				conditions of remotely-sensed	conditions of vegetation using remote
				vegetation, and other geoinformatics	sensing data
				applications, which are necessary for	4. Analyze vegetation conditions and
				the effective implementations of the	planting locations using geoinformatics
				precision and smart farming.	methods for effective management of
					agricultural sector

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106745	Geoinformatics for Planning and Management of Smart City	4(4-0-12)	None	This course aims to explain essential theories of smart city management. Main topics include urban components, evolution of urbanization, tools to forecast the urban expansion, land use planning regarding limitation of relevant laws. Implementation of GIS-based models in assessing suitability of the city management based on known internal/external influencing factors is also provided through the simulation and prediction of the models in use.	1. Explain theories of smart city as well as give examples of smart city at present 2. Discuss urban theories, evolution of urbanization and various types of city planning 3. Assess the sufficient provisional infrastructure and traffic connecting to the urban expansion with optional solutions 4. Evaluate the environmental impacts on urbanization with solution guideline 5. Present feasible analysis project in transportation, socio-economics, environmental situation for smart city management in response to internal/external resources practically 6. Predict urban expansion using appropriate urban growth models

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106746 Geoinformatics for Pollution and Urban Environment Management	4(4-0-12)	None	This course aims to study various kinds of pollution in urban environment regarding enforced standards and regulations. One of many topics leads to a discussion regarding the barriers to data collection which may affect to reliability of analyzed results. Development and tendency of the achievements in mitigating urban pollution around the world shall be discussed intensively. This course contains a demonstration showing some techniques used to analyze vulnerable areas and endangered areas prone to urban pollution. The final part includes discussion on the intelligent warning system of the current situation in urban areas.	1. Identify the pollution situations regarding the standards and the cycle in pollution occurrences in urban areas accurately 2. Present the guidelines to control pollution situations and prevention of the re-occurrences in Thailand and other countries 3. Apply Geoinformatics technology to solve and manage urban pollutions properly 4. Analyze and present the vulnerable areas, endangered areas regarding the urban pollutions accurately 5. Planning monitoring system regarding the potential factors used in geoinformatics technology 6. Discuss and present a guideline of an intelligent monitoring system response to current pollution situations in urban areas effectively

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106747 Geoinformatics for smart transportation and traffic system management	4(4-0-12)	_	This course covers the fundamental theorem of network analysis in GIS, transportation model and traffic management system. It also presents insight image of main components and architecture of data infrastructure in the smart traffic system. This basic infrastructure is considered in database design for traffic management system effectively. Some projects will be intensively studied and analyzed in network analysis corresponding with the intelligent traffic management system.	1. Understand the fundamental theorem of the functions of network analysis in GIS 2. Explain the constructive models of transportation and traffic management system 3. Design database of tourism and traffic response to components and architectural infrastructure of smart traffic management system 4. Analyze the network analysis techniques to overcome the taken issues accurately 5. Present the analyzed results rationally through network analysis for transportation and traffic management clearly

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106748	Geoinformatics for Effective Management of Business and Public Services	4(4-0-12)	None	This course aims to study applications of geoinformatics science to the management of business and public services effectively. Focus is on location-based businesses, e.g., retail, insurance, real estate. Public services are considered based primarily on level of their service area (e.g., local, city, regional, national) and their organizations (both public/private sectors).	1. Explain principles of effective management in location-based business and service 2. Explain principles of geoinformatics applications to the management of considered location-based business and service effectively 3. Apply geoinformatics/spatial models to the study of the considered topics/issues in business and public services management effectively 4. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106749	Geoinformatics for	4(4-0-12)	106803 Advanced	This course aims to implement	1. Explain meaning/concept of tourism
	Sustainable		Geographic	geoinformatics technology to	management according to the tourism
	Tourism and		Information System or	sustainable tourism and recreational	places
	Recreational		by consent of the school	management with response to	2. Discuss optimal balance in social,
	Management			sustainable concerns (regarding	economic, and environment for
				social, economic, and environmental	sustainability concept of tourism and
				issues). Apart from the fundamental	recreational management
				theory, this course also focuses on	3. Produce a thematic map of tourism
				tourism database creation and its	and recreation accurately
				management as well as thematic	4. Analyze and present the application
				mapping. Discussions on current	of geoinformatics technology for
				situations of tourism and recreational	sustainable tourism and recreational
				management by implementing	management
				geoinformatics technology in all	
				relevant aspects are also emphasized.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106751	Geoinformatics for Military and Law Enforcement Affairs Management	4(4-0-12)	None	This course aims to study applications of geoinformatics science to the management of military and law enforcement affairs effectively. For military affairs, focus is placed upon some important tasks, e.g., mapping, strategic database creation, terrain analysis, monitoring of target activities/areas, operation planning. And for the law enforcement affairs, focus is on improving capability of concerned state organizations by proper geoinformatics applications, e.g., police department, DSI, or Department of Justice.	1. Explain concepts and advances in geoinformatics applications to the management of military and law enforcement affairs effectively by the named organizations 2. Apply geoinformatics science to the study of referred topics/issues in military and law enforcement affairs management effectively 3. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

		Credit			
	Courses	(LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106752	Geoinformatics for Effective Management of Strategic Public Affairs	4(4-0-12)	None	This course aims to study effective managements of strategic public affairs through proper applications of geoinformatics. Several enforced strategic public policies or plans are considered, e.g., Thailand 4.0, 20-year national strategic plan (2017-2036), as well as specific plans for some critical issues like the water resource management plan, and current strategic plans implemented by several state organizations at provincial to national level.	1. Explain main content of the given strategic policies/plans of the government/state organizations 2. Explain principles of geoinformatics applications to the management of strategic public policies/plans of the government/state organizations effectively 3. Apply geoinformatics science to the study of given topics/issues in strategic public affairs management effectively 4. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments
106753	Geoinformatics for Effective Provincial and Local Administrations	4(4-0-12)	None	This course aims to study applications of geoinformatics science to the administration at provincial and local levels effectively based on plans/policies enforced at provincial level, or on missions under responsibility of the state agencies at provincial or local levels.	1. Explain main content of the given policies/plans at provincial level 2. Explain principles of geoinformatics application to aid effective provincial and local administrations 3. Apply geoinformatics science to the study of concerned topics/issues in provincial and local administrations effectively 4. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106754	Geoinformatics for Integrated ASEAN Development and Management	4(4-0-12)	None	This course aims to explore applications of geoinformatics science to the integrated management/development of ASEAN region in various aspects. These include, in particular, environment/natural resources, city and its environment, quality of life/economic security, climate change, natural disasters/severe pollutions, and public health/epidemiology.	1. Explain structure of ASEAN region and its management issues 2. Explain principles of geoinformatics applications to the management/development of ASEAN effectively on the given topics 3. Apply geoinformatics science to the study of concerned topics/issues in integrated management /development of ASEAN region effectively 4. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments
106831	Geoinformatics for Geology and Civil Engineering Studies	4(4-0-12)	106801 Advanced Remote Sensing or by consent of the school	This course aims to study applications of geoinformatics science in geology and civil engineering studies on various topics. These include, in particular, field survey, observation of target areas using airborne/spaceborne remote sensing tools (both active/passive types), 2D/3D mapping, construction of complex spatial database, analysis/processing of spatial data under given criteria, and applications of spatial models in specific tasks (especially for safety and risk analysis).	1. Explain principles of geoinformatics application to geology/civil engineering studies 2. Apply geoinformatics tools to the survey/collection of spatial data effectively 3. Apply geoinformatics science to the study of concerned topics/issues in geology and civil engineering studies effectively 4. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106832	Geoinformatics for Advanced Meteorology and Climatology Studies	4(4-0-12)	106801 Advanced Remote Sensing or by consent of the school	This course aims to study applications of geoinformatics science to advanced studies in meteorology and climatology. Main topics include origin and patterns of climate variation (in both spatial/temporal aspects) at local to global scales, impacts of climate changes (from past to present) on human and earth, progress on various fields (especially geoinformatics) in the monitoring and prediction of weather at present.	1. Explain crucial topics/issues in meteorology/climatology studies at present 2. Explain origins and patterns of climate variation (in both spatial/temporal aspects) 3. Analyze impacts of climate changes (from past to present) on human and earth 4. Analyze important roles of weather monitoring and prediction at present 5. Apply geoinformatics science to the study of concerned topics/issues in advanced meteorology and climatology studies effectively 6. Integrate relevant knowledge/skills
					to fulfill needs stated in the given assignments

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106888	Geoinformatics for Social Science Studies and Applications	4(4-0-12)	None	This course aims to explore roles of geoinformatics science in effective social science studies and applications. Prominent fields of social science to be considered are geography, anthropology, criminology, law, economics, economic development, education, sociology, for instance.	1. Explain notable topics in social science studies and applications nowadays 2. Explain principles of geoinformatics applications to the referred social science task 3. Analyze case studies of geoinformatics application to interested social science task 4. Apply geoinformatics science to the study of given topics/issues in advanced social science studies effectively 5. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106561 Introduction to Geoinformatics	4(3-3-10)	None	and technology including remote	 Describe working principles of the given remote sensing systems Describe working principles of the geographic information system (GIS) Describe working principles of the global positioning system (GPS) Apply geoinformatics technology to solve various problems

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106562	Introduction to	3(3-0-6)	None	This course aims to offer	1. Explain characteristics and variation
	Meteorology			fundamental knowledge of	pattern of meteorological elements of
				meteorology in various aspects to	interest
				students. These include, in particular,	2. Explain formation process and
				meteorological elements (e.g. air	characteristics of the optical
				temperature, air humidity, air	phenomena of interest
				pressure), optical phenomena,	3. Analyze trend of climate changes
				clouds, rain, storms, air movement	(spatial/temporal aspects) and their
				(at local to global scales), climate	impacts on human and earth
				changes (from past to present) and	4. Analyze roles of geoinformatics in
				their impacts, air pollutions and	atmosphere observations/weather
				disasters, scientific progress in	prediction
				weather monitoring and prediction	5. Integrate relevant knowledge/skills
				(especially those related to	to fulfill needs stated in the given
				geoinformatics science) at present.	assignments

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106563	Earth Science:	3(3-0-6)	None	This course aims to provide	1. Explain origins and development of
	Theory and			fundamental theories and	earth and living organisms based on
	Applications			applications of earth science in	theories and empirical evidences
				various topics. These include, in	2. Explain dynamic structure and
				particular, origins and development	components of earth system
				of earth and living organisms based	3. Explain relationship of humans and
				on theories and empirical evidences,	nature,
				dynamic structure and components of	4. Analyze notable advances and
				earth system (lithosphere,	significant roles of earth science
				hydrosphere, atmosphere, biosphere),	5. Analyze roles of geoinformatics
				relationship of humans and nature,	science in earth science study nowadays
				advances and significant roles of	6. Integrate relevant knowledge/skills
				earth science, and roles of	to fulfill needs stated in the given
				geoinformatics science in earth	assignments
				science study nowadays.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106564	Space Technology: Development and Applications	3(3-0-6)	None	This course aims to study space technology science in various topics. These include, in particular, origin and development; roles of the leading space organizations of the world (especially NASA); travelling between earth and space; travelling in space; working principles of satellite, spacecraft, and spaceborne remote sensors; life in space; spaceborne remote sensing of earth, solar system, and universe; prominent earth and space exploration projects; and roles/advances in space technology nowadays	1. Explain origin/development of space technology and roles of key space agencies 2. Explain principles of travelling between earth and space and travelling in space 3. Explain working principles of satellite, spacecraft, and spaceborne remote sensors 4. Explain concept of life in space and how to live in space productively 5. Analyze advances in earth/space exploration by space technology 6. Analyze advances in space technology and its roles in the modern world 7. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106565	Human Geography: From Past to Present	3(3-0-6)	None	This course aims to provide knowledge of human geography in various topics. These include, in particular, human origins, evolution, and their settlements (from past to present), diversity of human characteristics (e.g. believe, culture, politics, way of life), births of the city and civilization, pattern of life at present time, and applications of geoinformatics science to the human geography study nowadays.	1. Explain origins, evolution, and settlement pattern of humans from past to present 2. Explain diversity in notable human characteristics and their relevant causes 3. Analyze variation in human's pattern of life from past to present 4. Analyze roles of geoinformatics science to the human geography study nowadays 5. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments
106661	Advanced Geographical Tools	3(3-0-6)	None	This course aims to explore prominent geographical tools and their applications to various tasks (including geography education). These tools are initially divided into groups including (1) 2D maps, (2) field surveys, (3) statistical data analysis, (4) spatial technologies (e.g. virtual map, satellite imagery, aerial photo, GPS receivers, UAV-based photogrammetry, GIS, remote sensing), (5) data/information presentation technology, (6) new media/internet technologies for works in geography.	1. Explain about crucial advanced geographical tools and applications in various tasks 2. Apply the advanced geographical tools to effective study of the given topics/issues 3. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106662	Advances in	3(3-0-6)	None	This course aims to study advances	1. Explain working principles of main
	Applied			in applied geoinformatics on several	components of geoinformatics (RS,
	Geoinformatics			fields. First, working principles of	GIS, GNSS)
				main geoinformatics science	2. Explain principles of geoinformatics
				components (remote sensing, GIS,	applications to the referred field of
				GNSS) are presented followed by	interest
				apparent advances in geoinformatics	3. Analyze advances in applications of
				applications to various fields of	geoinformatics science to the given
				interest. These include, in particular,	fields
				agriculture and rural development,	4. Apply the geoinformatics science to
				hydrology/water resource	effective study of the concerned
				management, ecosystem	topics/issues in applied geoinformatics
				management, city and urban	5. Integrate relevant knowledge/skills
				environment management,	to fulfill needs stated in the given
				environment/severe pollution	assignments
				management, disaster/risk	
				management.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106663	Laws for Natural Resource and Environmental Management	3(3-0-6)	None	This course aims to study general concepts of environmental and natural resources management through established laws in various aspects, for examples, natural resources management, conservation of nature and pristine environment, forest/wildlife management, environmental/health impact assessments (EIA/HIA) and	1. Explain concepts of environmental/natural resources management through laws 2. Explain crucial laws for given environmental/natural resources management issues 3. Analyze roles of geoinformatics applications in effective enforcement of concerned laws in environmental and natural resources management
				international law/agreement in this field. Applications of geoinformatics science to effective enforcement of these laws are also presented and discussed herein.	4. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106761 Physical Principles of Remote Sensing	(3-0-6)	None	This course aims to provide knowledge on physical principles of remote sensing and its associated applications in various situations. Principle topics include electromagnetic (EM) theories and principles of remote sensing through electromagnetic waves, working principles of standard remote sensors at different spectral wavebands (especially visible, infrared, and microwave portions), and principles of remote observation in dynamics of earth's four main components (land, ocean, atmosphere, and biosphere).	1. Explain electromagnetic theories/principles of remote sensing through EM waves 2. Explain working principles of remote sensors at different spectral wavebands 3. Explain principles of remote sensing in dynamics of earth's 4 core components 4. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

	Courses	Credit (LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
		Self stud.)			
106762	Geoinformatics for	3(3-0-6)	None	This course aims to study	1. Explain concepts and theories in
	Sustainable			geoinformatics applications to	sustainable development of the country
	Development of the			sustainable development of the	2. Explain principles of geoinformatics
	Country			country in various aspects. These	applications to the sustainable
				include, in particular, natural	development of the country in given
				resources/environmental	fields
				management, urban planning and city	3. Analyze state policies established to
				management, Agricultural and	aid sustainable development of the
				industrial management, crucial	country
				security managements (e.g. food,	4. Integrate relevant knowledge/skills
				energy, economy) and quality of life	to fulfill needs stated in the given
				development. Content also covers	assignments
				development of policies by	
				responsible state agencies, or	
				organizations, to fulfil these	
				aforementioned needs (Intelligent	
				Action Policy).	

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
Management of Human- Environment Relationship	3(3-0-6)	None	This course studies sustainable management of human-environment relationship in various aspects. These include, in particular, related theories, sustainable managements seen in various sectors (e.g. agricultural/local parts, city/industrial parts) and community scales (from local to global scales), relevant social mechanisms/laws on this issue, and applications of geoinformatics science to fulfill such management.	1. Explain theories on sustainable management of human-environment relationship 2. Explain management principles on such issue in given sector or community scale 3. Analyze effectiveness of applied social mechanisms/laws in some case studies 4. Apply the geoinformatics science to effective study of the concerned topics/issues in sustainable management of human-environment relationship 5. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106764	English Proficiency for Geoinformatics Study and Research	3(3-0-6)	None	Development of English proficiency in 4 essential skills: listening, reading, speaking, and writing, improvement of listening skill using media on the internet holding content of geoinformatics software and data analysis methods, improve of reading skill by textbook and research article reading, development of speaking skill by delivering a presentation on the conclusion drawn from the reading and leading a discussion on the questionable issues, organizing knowledge gained from the reading and discussion and then writing report to enhance writing skill	 Explain new knowledge gained via listening the internet media Summarize main idea from the reading Present the main idea from the reading to the class Discuss the questionable issues from the reading Organize knowledge gained from the reading and discussion
106765	Graduate Cooperative Education in Geoinformatics	8(0-0-0)	Pre-cooperative Education course, or by concent of the school	This course aims to offer students work-based experience in the qualified workplace which lasts for about 1 semester (4 months).	1. Explain roles of geoinformatics in cooperative education at preferred workplace 2. Apply knowledge/skills in geoinformatics for cooperative education effectively

	Courses	Credit (LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
		Self stud.)			
205501	Entrepreneurship and Innovation	2(2-0-4)	None	Study of entrepreneurship, innovation and technology business, open innovation, attitudes and motivation of innovative entrepreneurs and social entrepreneurs, characteristics of	
				successful entrepreneurs, new venture process, business model generation and business plan, business Frost & Sullivan feasibility and problems of new ventures.	
205502	Opportunity and Feasibility Analysis	2(2-0-4)	None	Identify potential opportunities, trend and market analysis, technology roadmap and forecasting, opportunity assessment, develop a business concept and vision, customer's insight and customer validation, and feasibility analysis.	
205503	Intellectual Property Strategies	2(2-0-4)	None	Concepts and principles of intellectual property management, intellectual property from research and development, patent searching, intellectual property laws and methods of intellectual property protection, intellectual property valuation and method in creating return on intellectual properties.	

		Credit					
	Courses	(LectLab-	Prerequisite	Course Description	Expected Learning Outcomes		
		Self stud.)					
205507	Entrepreneurial	3(3-0-6)	None	Marketing for new products and new			
	Marketing			markets, market opportunity analysis			
				and evaluation, market segmentation			
				strategies, value proposition design,			
				marketing strategies and marketing			
				plan, the use of internet in marketing,			
				new product launch, branding and			
				brand management, and marketing			
				metrics.			
205508	Entrepreneurial	3(3-0-6)	None	Principles of entrepreneurship,			
	Finance			financing for entrepreneurial			
				processes from start-up to harvesting,			
				cost structure and financing need			
				analysis, revenue model analysis,			
				financing from money and capital			
				markets, analysis and evaluation of			
				financing sources, and cash flow			
				analysis.			
Seminar Course							
106881	Seminar I (for	1(1-0-3)	None	To present problems or academic			
	Ph.D. Program)			interests in specific geoinformatics			
				research topics at Ph.D level that			
				might eventually lead to the			
				formation of thesis proposal.			
106882	Seminar II (for	1(1-0-3)	None	To present final progress of the thesis			
	Ph.D. Program)			work by Ph.D. students.			
Thesis Course							

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106891	Ph.D. Thesis	60	None	Original research leading to the	
	(Scheme 1.1)			formation of a thesis as required by	
				the University's Regulations for the	
				Doctoral degree scheme 1.1.	
106892	Ph.D. Thesis	45	None	Original research leading to the	
	(Scheme 2.1)			formation of a thesis as required by	
				the University's Regulations for the	
				Doctoral degree scheme 2.1.	
106893	106893 Ph.D.	60	None	Original research leading to the	
	Thesis (Scheme 2.2)			formation of a thesis as required by	
				the University's Regulations for the	
				Doctoral degree scheme 2.2.	